A two-parametric quantization of $\mathrm{sl}(2)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 24 L165
(http://iopscience.iop.org/0305-4470/24/4/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 14:07

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A two-parametric quantization of $\mathbf{s l}(2)$

Č Burdík \dagger and L Hlavatý \ddagger
\dagger Nuclear Centre, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague 8, Czechoslovakia
\ddagger Institute of Physics, Czechoslovak Academy of Sciences, Na Slovance 2, 18040 Prague 8, Czechoslovakia

Received 12 October 1990

Abstract

A two-parametric solution of the constant Yang-Baxter equation is used for the construction of structures corresponding to quantized groups. The corresponding Hopf algebra is generated by five generators.

After the discovery of the quantized group $\operatorname{sl}_{q}(2)$ by Kulish and Reshetikhin (1981) and its reformulation in terms of a non-commutative Hopf algebra (Drinfeld 1986, Jimbo 1985) it was found by Reshetikhin et al (1989) that the defining relations for $\mathrm{sl}_{q}(2)$ can be obtained from the relations
$R^{+} L_{1}(\varepsilon) L_{2}(\varepsilon)=L_{2}(\varepsilon) L_{1}(\varepsilon) R^{+} \quad R^{+} L_{1}(+) L_{2}(-)=L_{2}(-) L_{1}(+) R^{+}$
where
$R^{+}:=P R_{q} P \quad R_{q}:=\left(\begin{array}{cccc}q & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & \Omega & 1 & 0 \\ 0 & 0 & 0 & q\end{array}\right) \quad P:=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
$\Omega=q-q^{-1}$
$\varepsilon= \pm$
$L_{1}(\varepsilon)=L(\varepsilon) \otimes 1$
$L_{2}(\varepsilon)=1 \otimes L(\varepsilon)$
and

$$
L(+)=\left(\begin{array}{cc}
K & E \tag{4}\\
0 & M
\end{array}\right) \quad L(-)=\left(\begin{array}{cc}
M & 0 \\
F & K
\end{array}\right) .
$$

Indeed, inserting (2)-(4) into (1) we obtain the relation for the 'quantized universal enveloping algebra' $U_{q}(\operatorname{sl}(2))$

$$
\begin{array}{lcc}
K M=M K \quad K F=q F K & K E=q^{-1} E K & \\
E F-F E=\left(K^{2}-M^{2}\right) \Omega & M F=q^{-1} F M \quad M E=q E M . \tag{5}
\end{array}
$$

The algebra $U_{q}(\mathrm{sl}(2))$ is obtained as the free algebra generated by (K, M, E, F) and factorized by the ideal corresponding to (5).

The familiar commutation relations of $\mathrm{sl}_{q}(2)$

$$
\begin{equation*}
\left[J_{0}, J_{ \pm}\right]= \pm J_{ \pm} \quad\left[J_{+}, J_{-}\right]=\frac{\sinh \left(2 \eta J_{0}\right)}{\sinh \eta} \tag{6}
\end{equation*}
$$

can be obtained from (5) by substitution
$q=\mathrm{e}^{\eta}$
$K=q^{-J_{0}}$
$M=q^{J_{0}}$
$E=\Omega J_{+}$
$F=-\Omega J_{-}$.

This substitution also implies

$$
\begin{equation*}
K M=M K=1 \tag{8}
\end{equation*}
$$

and it can be shown that the algebra $\left.U_{q}(s)(2)\right)$ defined by the relations (5) and (8) is a (non-commutative) Hopf algebra.

Besides that, it is possible to define an algebra of functions on the 'quantum matrix algebra' Fun($\mathrm{sl}_{q}(2)$) by inserting $R=R_{q}$ into

$$
R T_{1} T_{2}=T_{2} T_{1} R \quad T=\left(\begin{array}{cc}
A & B \tag{9}\\
C & D
\end{array}\right)
$$

and 'quantum vector spaces' by

$$
\begin{equation*}
f(P R)(x \otimes x)=0 \tag{10}
\end{equation*}
$$

(see Reshetikhin et al 1989). The matrix R_{q} is a solution of the constant Yang-Baxter equation

$$
\begin{equation*}
R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12} \tag{11}
\end{equation*}
$$

In fact R_{q} is a special form of a two-parametric solution found in Hlavatý (1987) that can be written as

$$
R_{q, s}:=\left(\begin{array}{cccc}
q & 0 & 0 & 0 \tag{12}\\
0 & s & 0 & 0 \\
0 & \Omega & s^{-1} & 0 \\
0 & 0 & 0 & q
\end{array}\right)
$$

Obviously $R_{q, s=1}=R_{q}$ and a natural question is: what quantized algebras are obtained when $R_{q, s}$ is used in the above-sketched derivation? The answer is the content of this letter.

Inserting $R^{+}=P R_{q, s} P$ into the relation (1) we obtain a modification of the defining relations for the quantized universal enveloping algebra in the form
$K M=M K \quad K F=q s F K \quad K E=(q s)^{-1} E K$
$s^{-1} E F-s F E=\left(K^{2}-M^{2}\right) \Omega \quad M F=q^{-1} s F M \quad M E=q s^{-1} E M$.
We shall call the algebra defined by these relations $U_{4, s}(s l(2))$. By the substitution

$$
\begin{equation*}
K=(q s)^{-J_{0}} \quad M=\left(q^{-1} s\right)^{-J_{0}} \quad E=\Omega J_{+} \quad F=-\Omega J_{-} \tag{14}
\end{equation*}
$$

we can get a modification of the commutation relation (6) in the form

$$
\begin{equation*}
\left[J_{0}, J_{ \pm}\right]= \pm J_{ \pm} \quad\left[J_{+}, J_{-}\right]_{s}:=s^{-1} J_{+} J_{-}-s J_{-} J_{+}=s^{-2 J_{0}} \frac{\sinh \left(2 \eta J_{0}\right)}{\sinh \eta} \tag{15}
\end{equation*}
$$

Several comments on the properties of this two-parametric deformation of $\mathrm{sl}(2)$ are in order.
(i) Similarly to $\mathrm{sl}_{q}(2)$, the Pauli matrices are the two-dimensional representation of the algebra (15).
(ii) The comultiplication Δ defined by

$$
\begin{align*}
& \Delta(K)=K \otimes K \quad \Delta(M)=M \otimes M \tag{16}\\
& \Delta(E)=K \otimes E+E \otimes M \quad \Delta(F)=K \otimes F+F \otimes M
\end{align*}
$$

preserves relations (13) and converts the algebra $U_{q, s}(s l(2))$ into a bialgebra.
(iii) Differently from the $\mathrm{sl}_{q}(2)$, the element $K M$ does not belong to the centre of $U_{q, s}(s l(2))$ and therefore cannot be identified with the unit. This is a main obstacle that prevents finding an antipode function on the bialgebra $U_{q, s}(\mathrm{sl}(2))$ and converting $U_{q, s}(\operatorname{sl}(2))$ into a Hopf algebra.

For this reason the algebra determined by (13) should rather be called a 'quantum semigroup'.

We can also define the algebra Fun($\left(\mathbf{s i}_{q, 5}(2)\right)$ of functions on the quantum matrix algebra and the quantum vector spaces $C_{f\left(R_{4, s}\right)}^{2}$. The algebra Fun($\left.\mathrm{sl}_{q, s}(2)\right)$ is determined by the relation (9) where $R=R_{q, s}$. This yields
$A B=B A q s$

$$
C B=B C s^{2}
$$

$$
\begin{equation*}
A C=C A q s^{-1} \tag{17}
\end{equation*}
$$

$B D=D B q s^{-1}$
$C D=D C q s$
$[A, D]=\left(q s^{-1}-q^{-1} s^{-1}\right) C B$.

It is easy to define the bialgebra structure on $\operatorname{Fun}\left(\mathrm{sl}_{q, s}(2)\right)$ by

$$
\begin{equation*}
\Delta\left(T_{i}^{j}\right)=T_{i}^{k} \otimes T_{k}^{j} \tag{18}
\end{equation*}
$$

but determination of the Hopf structure on this algebra is not as simple as for the algebra associated with R_{q}. Nevertheless, according to the theorem 8 in Reshetikhin et al (1989) it should be possible to define the Hopf structure because the matrix $R_{q, s}$ fulfils also the condition

$$
\begin{equation*}
\Gamma\left(R_{q, s}\right) P \Lambda\left(R_{q, s}\right) P K_{0}=\text { constant } K_{0} \tag{19}
\end{equation*}
$$

where

$$
\begin{align*}
& \Gamma\left(R_{q, s}\right):=\left(R_{q, s}^{-1} t_{1}^{t_{1}}\right. \tag{20}\\
& \Lambda\left(R_{q, s}\right):=\left(R_{q, s}^{t_{2}}\right)^{-1} \tag{21}
\end{align*}
$$

(t_{1}, t_{2} are transpositions in the first and second indices of the matrix $\left.R=\left\langle R_{i, 1}^{j} j_{2} j_{2}\right\rangle\right)$ and

$$
K_{0}:=\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

For definition of the quantum vector spaces it is important that the matrix $\tilde{R}_{q, s}=P R_{q, s}$ satisfies the Hecke condition

$$
\begin{equation*}
\left(\tilde{R}_{q, s}\right)^{2}:=\Omega\left(\tilde{R}_{q, \mathrm{~s}}\right)+1 \tag{22}
\end{equation*}
$$

This makes it possible to write the matrix $R_{q . s}$ in terms of two projectors

$$
\begin{equation*}
P^{+}:=\frac{\left(\tilde{R}_{q, s}\right)+q^{-1}}{q+q^{-1}} \quad P^{-}:=\frac{\left(-\tilde{R}_{q, s}\right)+q^{-1}}{q+q^{-1}} \tag{23}
\end{equation*}
$$

of ranks 3 and 1 . These projectors can be used to define 'the algebra of functions on the two-dimensional quantum vector space' (Reshetikhin et al 1989) by generators x_{1}, x_{2} satisfying

$$
\begin{equation*}
x_{1} x_{2}=q x_{2} x_{1} \tag{24}
\end{equation*}
$$

and 'the exterior algebra of the two-dimensional quantum vector space' defined by

$$
\begin{equation*}
\left(y_{1}\right)^{2}=\left(y_{2}\right)^{2}=0 \quad s y_{1} y_{2}=-q^{-1} y_{2} y_{1} \tag{25}
\end{equation*}
$$

As noted before, it seems that $U_{q, s}(s i(2))$ cannot be turned into a Hopf algebra. However, this can be done if we extend the algebra by another generator Z and the following relations

$$
\begin{equation*}
K Z=Z K \quad M Z=Z M \quad Z E=s^{2} E Z \quad Z F=s^{-2} F Z . \tag{26}
\end{equation*}
$$

The element $K M Z$ then belongs to the centre and we can set

$$
\begin{equation*}
K M Z=1 \tag{27}
\end{equation*}
$$

The resulting algebra is a bialgebra with comultiplication given by (16) and

$$
\begin{equation*}
\Delta(Z)=Z \otimes Z \tag{28}
\end{equation*}
$$

It can be turned into the Hopf algebra by definitions of the antipod and counit functions as
$\begin{array}{lrrr}S(K)=M Z & S(M)=K Z & S(Z)=K M & S(E)=-q s E Z \\ S(F)=-(q s)^{-1} F Z & \varepsilon(K)=\varepsilon(M)=\varepsilon(Z)=1 & \varepsilon(E)=\varepsilon(F)=0 .\end{array}$
This extension of $U_{q, s}(\mathrm{sl}(2))$ into the Hopf algebra then can be considered as the dual object (Drienfeld 1986) to a quantum group that is a two-parametric deformation of the group sl(2).

Let us note finally that the matrix (12) is not the only solution of the constant ybe found in Hlavaty (1987). Besides this, there are nine others. Unfortunately, most of them do not converge to the unit matrix for special values of parameters. It means that the algebras they define have no 'classical counterparts'. Nevertheless, it might be interesting to investigate their properties.
Useful discussions with M Bednář and M Havlíček are gratefully acknowledged.
Note added in proof. After finishing this letter we became aware of the preprint of Schirmacher et al (1990) where the matrix (12) is used but the quantization procedure is different. Moreover, from the referee's report we found out that the algebra that is investigated in detail here is a special case of two-parameter quantization of $\operatorname{gl}(n)$ (Takeuchi 1990), which is a special case of multiparameter quantization of $g l(n)$ (Sudbery 1990), which is a special case of multiparameter quantization of semisimple Lie algebras (Reshetikhin 1990).

References

Drinfeld V G 1986 Proc. IMS, Berkeley vol 1 (New York: Academic) p 798
Faddeev L D 1984 Integrable Models (Les Houches Lectures 1982) (Amsterdam: Elsevier) 1984
Hlavatý L 1987 J. Phys. A: Math. Gen. 191661
Jimbo M 1985 Lett. Math. Phys. 10 63; 1986 Lett. Math. Phys. 11247
Kulish P P and Reshetikhin N Yu 1981 Zap. Nauchn. Sem. LOMI 101101 (in Russian); 1983 J. Sov. Math. 232435
Reshetikhin N Yu 1990 Multiparameter quantum groups and twisted quasitriangular Hopf algebras Preprint Harvard
Reshetikhin N Yu, Takhtajan L A and Faddeev L D 1989 Algebra i Analiz 1178 (in Russian)
Schirrmacher A, Wess J and Zumino B 1990 Preprint KA-THEP-1990-19
Sudbery A 1990 J. Phys. A: Math. Gen. 23 L697
Takeuchi 1990 Proc. Jap. Acad. 66112

